Name:.
 SBU AMS Quantitative Finance Qualifying Exam

May 14, 2021

Problem 1. (20p) (Option Pricing in a Binomial Model)

Consider a binomial tree model for an underlying asset process

$$
\left\{S_{n}: 0 \leq n \leq N\right\}
$$

where $S_{0}=4$. Let

$$
S_{n+1}= \begin{cases}u S_{n} & \text { with probability } \widetilde{p} \\ d S_{n} & \text { with probability } 1-\widetilde{p}\end{cases}
$$

where $u=2$ and $d=1 / u$. Assume that the one period risk-free interest rate is $r=25 \%$, and using $N=2$ (i.e., $n=0,1,2$) period binomial tree model find
(i) (5p) the $n=0$ price V_{0}^{C} of an American call option that has intrinsic value $g_{C}(s)=$ $(s-K)^{+}$, and the strike $K=5$.
(ii) (5p) the $n=0$ price V_{0}^{P} of an American put option that has intrinsic value $g_{P}(s)=$ $(K-s)^{+}$, and the strike $K=5$.
(iii) (5p) the $n=0$ price V_{0}^{S} of an American straddle option that has intrinsic value $g_{S}(s)=$ $g_{C}(s)+g_{P}(s)$, and both of the strikes are $K=5$.
(iv) (5p) Explain why $V_{0}^{S} \leq V_{0}^{C}+V_{0}^{P}$.

Problem 2. (20p) (Brownian Motion and Time Inversion)

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and let B_{t}, for $t \geq 0$, be a Brownian motion.
(i) $(5 p+5 p=10 p)$

Show that

$$
\operatorname{Cov}\left(B_{s}, B_{t}\right)=\min (t, s),
$$

and that

$$
\operatorname{Corr}\left(B_{s}, B_{t}\right)=\sqrt{\frac{\min (t, s)}{\max (t, s)}}
$$

(Hint: Use the properties in the definition of the Brownian motion.)
(ii) (10p)

Show that the following process defined via time inversion

$$
W_{t}= \begin{cases}0 & \text { if } t=0 \\ t B_{\frac{1}{t}} & \text { if } t \neq 0\end{cases}
$$

is also a Brownian motion.
(Hint: Show the three properties from one of the definitions of the Brownian motion, use the first result from (i) above.)

Problem 3 (20p) (Digital Option - Probabilistic Approach)

Let $\left\{W_{t}: t \geq 0\right\}$ be a \mathbb{P}-standard Wiener process on the probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and let the stock price S_{t} follow a GBM with the following SDE

$$
d S_{t}=S_{t} \mu d t+S_{t} \sigma d W_{t}
$$

where μ is the drift parameter, $\sigma>0$ is the volatility parameter, and let $r>0$ denote the risk-free interest rate.

A digital (or cash-or-nothing) call option is a contract that pays $\$ 1$ at expiry time T if the spot price $S_{T}>K$ and nothing if $S_{T} \leq K$. In contrast, a digital (or cash-or-nothing) put pays $\$ 1$ at expiry time T if the spot price $S_{T}<K$ and nothing if $S_{T} \geq K$.
(i) (5p) Find an equivalent martingale measure \mathbb{Q} under which the discounted stock price $e^{-r t} S_{t}$ is a martingale (discuss why this is a martingale).
(ii) (5p) By denoting $C_{d}\left(S_{t}, t ; K, T\right)$ and $P_{d}\left(S_{t}, t ; K, T\right)$ as the digital call and put option prices, respectively at time t, for $t<T$ show that

$$
C_{d}\left(S_{t}, t ; K, T\right)=e^{-r(T-t)} \mathbb{Q}\left(S_{T}>K \mid \mathcal{F}_{t}\right)
$$

and

$$
P_{d}\left(S_{t}, t ; K, T\right)=e^{-r(T-t)} \mathbb{Q}\left(S_{T}<K \mid \mathcal{F}_{t}\right) .
$$

(iii) (5p) Using Ito lemma find the distribution of S_{T} given \mathcal{F}_{t} under \mathbb{Q}, and show, using the risk-neutral valuation approach from (i) and (ii) above, that

$$
C_{d}\left(S_{t}, t ; K, T\right)=e^{-r(T-t)} \Phi\left(d_{-}\right) \quad \text { and } \quad P_{d}\left(S_{t}, t ; K, T\right)=e^{-r(T-t)} \Phi\left(-d_{-}\right)
$$

where

$$
d_{-}=\frac{\log \left(S_{t} / K\right)+\left(r-\frac{1}{2} \sigma^{2}\right)(T-t)}{\sigma \sqrt{T-t}} \text { and } \Phi(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-\frac{1}{2} u^{2}} d u
$$

(iv) (5p) Verify that the put-call parity for a digital option is

$$
C_{d}\left(S_{t}, t ; K, T\right)+P_{d}\left(S_{t}, t ; K, T\right)=e^{-r(T-t)}
$$

Problem 4. (20p) (Identification of ARMA Processes)

Figure 1 below shows simulated paths for various time series processes as well as the corresponding sample autocorrelation function (ACF) and partial autocorrelation function (PACF) plots. In each case the innovations $\left(\varepsilon_{t}\right)_{t \in \mathbb{Z}}$ are from a strict white noise process and the time series $\left(X_{t}\right)_{t \in \mathbb{Z}}$ follows one of the following models:
(a) (4p) $X_{t}=\varepsilon_{t}-0.3 \varepsilon_{t-1}-0.4 \varepsilon_{t-2}, t \in \mathbb{Z}$
(b) (4p) $X_{t}=10+20 t+2 t \sin (t)+\varepsilon_{t}, t \in \mathbb{Z}$
(c) (4p) $X_{t}-0.3 X_{t-1}-0.4 X_{t-2}=\varepsilon_{t}, t \in \mathbb{Z}$
(d) (4p) $X_{t}=\varepsilon_{t}-0.7 \varepsilon_{t-1}, t \in \mathbb{Z}$
(e) (4p) $X_{t}-0.3 X_{t-1}=\varepsilon_{t}-0.6 \varepsilon_{t-1}, t \in \mathbb{Z}$

Match each model with the pictures, explaining your reasoning.

Figure 1: Paths of five time series $\left(X_{t}\right)_{t \in \mathbb{Z}}$ (left) with corresponding ACF (middle) and PACF (right).

Problem 5. (20p) ((Non)-Subadditivity of Value-at-Risk (VaR))

(i) (10p) Consider a portfolio of $d=100$ defaultable corporate bonds. We assume that defaults of different bonds are independent; the default probability is identical for all bonds and is equal to 2%. The current price of the bonds is 100 USD. If there is no default, a bond pays in $t+1$ (one year from now, say) an amount of 105 USD; otherwise there is no repayment. Hence L_{i}, the loss of bond i, is equal to 100 USD when the bond defaults and to -5 USD otherwise. Denote by Y_{i} the default indicator of firm i, i.e. Y_{i} is equal to one if bond i defaults in $[t, t+1]$ and equal to zero otherwise. We get $L_{i}=100 Y_{i}-5\left(1-Y_{i}\right)=105 Y_{i}-5$ USD. Hence the L_{i} form a sequence of iid rvs with $\mathbb{P}\left(L_{i}=5\right)=0.98$ and $\mathbb{P}\left(L_{i}=100\right)=0.02$. Your goal is to compare two portfolios in terms of their $V a R$ values, both with current value equal to 10000 USD.

- Portfolio A is fully concentrated and consists of 100 units of bond one.
- Portfolio B is completely diversified: it consists of one unit of each of the bonds.

Economic intuition suggests that portfolio B is less risky than portfolio A and hence should have a lower $V a R$. Compute $V a R$ at a confidence level of 95% for both portfolios. Is the $V a R$ subadditive in this example? (For a binomial distribution $M \sim B(100,0.02), \mathbb{P}(M \leq 5) \approx 0.984$ and $\mathbb{P}(M \leq 4) \approx 0.949$. $)$
(ii) (10p) Suppose $\mathbf{X}=\left(X_{1}, \ldots, X_{d}\right) \sim N_{d}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ and let \mathcal{M} denote the space of all risks of the form $L=\boldsymbol{\lambda}^{\prime} \mathbf{X}=\sum_{j=1}^{d} \lambda_{j} X_{j}$. Prove that $V a R_{\alpha}$ is subadditive on \mathcal{M} for all $\alpha \in[1 / 2,1)$.
Hints: Without loss of generality you can assume $d=2$, use the fact that $V a R$ is translation invariant and positively homogeneous, i.e., $\operatorname{Va} R_{\alpha}(\mu+\sigma X)=\mu+\sigma V a R_{\alpha}(X)$, and apply Cauchy-Schwarz inequality to get the result.

Problem 6. (20p) (An Interpretation of the Principal Components Transform)

Let \mathbf{X} be a random vector with $\mathbb{E}(\mathbf{X})=0$ and $\operatorname{cov}(\mathbf{X})=\boldsymbol{\Sigma}$. Let \mathbf{Y} be the vector given by the principal components transform of \mathbf{X}. In other words, $\mathbf{Y}=\boldsymbol{\Gamma} \mathbf{X}$, where $\boldsymbol{\Sigma}=\boldsymbol{\Gamma} \boldsymbol{\Lambda} \boldsymbol{\Gamma}^{\prime}$, the columns of $\boldsymbol{\Gamma}$ contain the orthonormal eigenvectors of $\boldsymbol{\Sigma}$ and $\boldsymbol{\Lambda}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{d}\right)$, where $\lambda_{1} \geq \cdots \geq \lambda_{d}$ denote the sorted eigenvalues of $\boldsymbol{\Sigma}$. The j th principal component Y_{j} is thus $Y_{j}=\gamma_{j}^{\prime} \mathbf{X}$, where j is the j th column of $\boldsymbol{\Gamma}$ (the eigenvector corresponding to the j th largest eigenvalue of $\boldsymbol{\Sigma}$), also known as j th vector of loadings or j th principal axis.
(i) (10p) Show that the first principal component Y_{1} of \mathbf{X} satisfies

$$
\operatorname{Var}\left(Y_{1}\right)=\max _{\mathbf{a} \in \mathbb{R}^{d},\|\mathbf{a}\|=1} \operatorname{Var}\left(\mathbf{a}^{\prime} \mathbf{X}\right)
$$

that is Y_{1} is the standardized linear combination $\mathbf{a}^{\prime} \mathbf{X}$ of \mathbf{X} with maximal variance among all linear combinations.
(ii) (10p) Show that the second principal component Y_{2} of \mathbf{X} satisfies

$$
\operatorname{Var}\left(Y_{2}\right)=\max _{\mathbf{a} \in \mathbb{R}^{d},\|\mathbf{a}\|=1, \mathbf{a}^{\prime} \boldsymbol{\gamma}_{1}=0} \operatorname{Var}\left(\mathbf{a}^{\prime} \mathbf{X}\right)
$$

that is Y_{2} is the standardized linear combination $\mathbf{a}^{\prime} \mathbf{X}$ of \mathbf{X} with maximal variance among all linear combinations orthogonal to the first principal axis.

Hint. Apply the method of Lagrange multipliers. It may also be useful to use the facts that $\frac{\partial}{\partial \mathbf{x}} \mathbf{a}^{\prime} \mathbf{x}=\frac{\partial}{\partial \mathbf{x}} \mathbf{x}^{\prime} \mathbf{a}=\mathbf{a}$, and $\frac{\partial}{\partial \mathbf{x}} \mathbf{x}^{\prime} \mathbf{A} \mathbf{x}=\left(\mathbf{A}+\mathbf{A}^{\prime}\right) \mathbf{x}$.

